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1. (a) (15 points) A matrix H = (hij) is called upper Hessenberg if hij = 0 when
i > j + 1. Describe the Gaussian elimination algorithm required to solve Hx = f ,
assuming you never need to swap rows How many flops (floating point operations) are
needed if H ∈ Rn×n? (The answer should be put into the big O notation, i.e., of the type
O(nk), with the smallest possible k.)

(b)(15 points) Manually perform three steps of Euler’s method to solve

dy

dt
=

1

t + y + 1
, y(0) = 0

with h = 0.2.

2. (a) (10 points) Gauss quadrature on [−1, 1] with three node points is given by

G3(f) =
5

9
f(
−
√

15
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5

9
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15
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Determine the value of constant a and then use this quadrature formula to approximate∫ 1

0

(lnx2 + (2x− 1)2)dx.

(b) (10 points) If we approximate the integral
∫ b

a
f(x)dx by the composite trapezoidal

rule with n subintervals, T (n), we obtain

T (24) = 0.80326, T (48) = 0.80440, T (96) = 0.80468.

Use this information to compute the composite Simpson’s rule estimates with n subinter-
vals, S(n), for n = 24 and n = 48.

3. (15 points) Let

A =


1 −2 3 0
1 −2 3 1
2 1 3 −1
1 −2 2 −2

 .

Does A have an LU factorization where L is lower triangular with 1’s on its diagonal and
U is upper triangular? If not, determine if there is a permutation matrix P such that
PA = LU . Find the matrix L, U and P .



4. (a) (10 points) For certain function f(x), we know f [0] = 1, f [0, 1] = −1, f [0, 1, 2] = 2.
Furthermore, we know the absolute value of f [0, 1, 2, x] is less than or equal to 3 for any
x ∈ [0, 1]. Determine the quadratic polynomial p2(x) that interpolates f(x) at x = 0, 1, 2.
Then find a good upper bound for |f(0.5)− p2(0.5)|.

(b) (10 points) Determine the parameters a, b, c, d and e so that S is a cubic spline inter-
polation with natural end conditions.

S(x) =

{
a + b(x− 1) + c(x− 1)2 + d(x− 1)3 x ∈ [0, 1]
(x− 1)3 + ex2 − 1 x ∈ [1, 2]

5. (30 points) Please fill in the blanks so as to ensure that the below (three) program
runs correctly in OCTAVE.
5(a)

function r = bisect(fun,xb,xtol,ftol,verbose)

% bisect Use bisection to find a root of the scalar equation f(x) = 0

%

% Synopsis: r = bisect(fun,xb)

% r = bisect(fun,xb,xtol)

% r = bisect(fun,xb,xtol,ftol)

% r = bisect(fun,xb,xtol,ftol,verbose)

%

% Input: fun = (string) name of function for which roots are sought

% xb = vector of bracket endpoints. xleft = xb(1), xright = xb(2)

% xtol = (optional) relative x tolerance. Default: xtol=5*eps

% ftol = (optional) relative f(x) tolerance. Default: ftol=5*eps

% verbose = (optional) print switch. Default: verbose=0, no printing

%

% Output: r = root (or singularity) of the function in xb(1) <= x <= xb(2)

if size(xb,1)>1, warning(’Only first row of xb is used as bracket’); end

if nargin < ----(1)----, xtol = 5*eps; end

if nargin < ----(2)----, ftol = 5*eps; end

if nargin < ----(3)----, verbose = 0; end

xeps = max(xtol,5*eps); % Smallest tolerances are 5*eps

feps = max(ftol,5*eps);

a = xb(1,1); b = xb(1,2); % Use first row if xb is a matrix

xref = abs(b - a); % Use initial bracket in convergence test

fa = feval(fun,a); fb = feval(fun,b);

fref = max([abs(fa) abs(fb)]); % Use max f in convergence test

if sign(fa)==----(4)---- % Verify sign change in the interval

error(sprintf(’Root not bracketed by [%f, %f]’,a,b));

end



if verbose

fprintf(’\nBisection iterations for %s.m\n’,fun);

fprintf(’ k xm fm\n’);

end

k = 0; maxit = 50; % Current and max number of iterations

while k < maxit

k = k + 1;

dx = b - a;

xm = a + 0.5*dx; % Minimize roundoff in computing the midpoint

fm = feval(----(5)----,xm);

if verbose, fprintf(’%4d %12.4e %12.4e\n’,k,xm,fm); end

if (abs(fm)/fref < feps) | (abs(dx)/xref < xeps) % True when root is found

r = ----(6)----; return;

end

if sign(fm)==sign(fa)

a = ----(7)----; fa = ----(8)----; % Root lies in interval [xm,b],

% replace a and fa

else

b = ----(9)----; fb = ----(10)----; % Root lies in interval [a,xm],

% replace b and fb

end

end

warning(sprintf(’root not within tolerance after %d iterations\n’,k));

5 (b)

function yhat = hermint(x,f,fp,xhat)

% hermint Piecewise-cubic Hermite interpolation

%

% Synopsis: yhat = hermint(x,f,fp,xhat)

%

% Input: x = vector of independent variable values

% f, fp = vectors of f(x) and f’(x)

% xhat = (scalar or vector) x values where interpolant is evaluated

%

% Output: yhat = scalar or vector value of cubic hermite interpolant at

% x = xhat. size(yhat) = size(xhat)

n = length(x);

if length(f)~=n, error(’x and f are not compatible’);



elseif length(fp)~=n, error(’x and fp are not compatible’); end

% --- Construct coefficients of the piecewise interpolants

x = x(:); xhat = xhat(:); % Convert to column vectors

f = f(:); fp = fp(:);

dx = diff(x); % Vector of x(i+1) - x(i) values

divdif = diff(f)./dx; % Vector of divided differences, f[x(i),x(i+1)]

a = ----(11)----;

b = ----(12)----;

c = ( ----(13)---- ) ./dx;

d = ( ----(14)---- ) ./dx.^2;

% --- Locate each xhat value in the x vector

i = zeros(size(xhat)); % i is index into x such that x(i) <= xhat <= x(i+1)

for m=1:length(xhat) % For vector xhat: x( i(m) ) <= xhat(m) <= x( i(m)+1 )

i(m) = binSearch(x,xhat(m));

end

% --- Nested, vectorized evaluation of the piecewise polynomials

xx = xhat - x(i);

yhat = a(i) + xx.*(b(i) + xx.*(c(i) + xx.*d(i)) );

5 (c)

function [c,R2] = linefit(x,y)

% linefit Least-squares fit of data to y = c(1)*x + c(2)

%

% Synopsis: c = linefit(x,y)

% [c,R2] = linefit(x,y)

%

% Input: x,y = vectors of independent and dependent variables

%

% Output: c = vector of slope, c(1), and intercept, c(2) of least sq. line fit

% R2 = (optional) coefficient of determination; 0 <= R2 <= 1

% R2 close to 1 indicates a strong relationship between y and x

if length(y)~= length(x), error(’x and y are not compatible’); end

x = x(:); y = y(:); % Make sure that x and y are column vectors

A = ----(15)----; % m-by-n matrix of overdetermined system

c = ----(16)----; % Solve normal equations

if nargout>1

r = ----(17)----;

R2 = ----(18)----;

end


