
May 2nd, 2012 Name (Please Print)
CS II - Semesteral Exam- Semester II 11/12

Your Signature

Instructions:
Maximum time is 3 hours. Maximum possible score is 100.

Show all your work. Correct answers with insufficient or incorrect
work will not get any credit.

Score

1. (30)

2. (20)

3. (20)

4. (10)

5. (30)

Total. (110)

Please attach this sheet on top of the first page of your answer script.

May 2nd, 2012 Name (Please Print)
CS II - Semesteral Exam- Semester II 11/12

Your Signature

1. (a) (15 points) A matrix H = (hij) is called upper Hessenberg if hij = 0 when
i > j + 1. Describe the Gaussian elimination algorithm required to solve Hx = f ,
assuming you never need to swap rows How many flops (floating point operations) are
needed if H ∈ Rn×n? (The answer should be put into the big O notation, i.e., of the type
O(nk), with the smallest possible k.)

(b)(15 points) Manually perform three steps of Euler’s method to solve

dy

dt
=

1

t + y + 1
, y(0) = 0

with h = 0.2.

2. (a) (10 points) Gauss quadrature on [−1, 1] with three node points is given by

G3(f) =
5

9
f(
−
√

15

5
) + af(0) +

5

9
f(

√
15

5
)

Determine the value of constant a and then use this quadrature formula to approximate∫ 1

0

(lnx2 + (2x− 1)2)dx.

(b) (10 points) If we approximate the integral
∫ b

a
f(x)dx by the composite trapezoidal

rule with n subintervals, T (n), we obtain

T (24) = 0.80326, T (48) = 0.80440, T (96) = 0.80468.

Use this information to compute the composite Simpson’s rule estimates with n subinter-
vals, S(n), for n = 24 and n = 48.

3. (15 points) Let

A =


1 −2 3 0
1 −2 3 1
2 1 3 −1
1 −2 2 −2

 .

Does A have an LU factorization where L is lower triangular with 1’s on its diagonal and
U is upper triangular? If not, determine if there is a permutation matrix P such that
PA = LU . Find the matrix L, U and P .

4. (a) (10 points) For certain function f(x), we know f [0] = 1, f [0, 1] = −1, f [0, 1, 2] = 2.
Furthermore, we know the absolute value of f [0, 1, 2, x] is less than or equal to 3 for any
x ∈ [0, 1]. Determine the quadratic polynomial p2(x) that interpolates f(x) at x = 0, 1, 2.
Then find a good upper bound for |f(0.5)− p2(0.5)|.

(b) (10 points) Determine the parameters a, b, c, d and e so that S is a cubic spline inter-
polation with natural end conditions.

S(x) =

{
a + b(x− 1) + c(x− 1)2 + d(x− 1)3 x ∈ [0, 1]
(x− 1)3 + ex2 − 1 x ∈ [1, 2]

5. (30 points) Please fill in the blanks so as to ensure that the below (three) program
runs correctly in OCTAVE.
5(a)

function r = bisect(fun,xb,xtol,ftol,verbose)

% bisect Use bisection to find a root of the scalar equation f(x) = 0

%

% Synopsis: r = bisect(fun,xb)

% r = bisect(fun,xb,xtol)

% r = bisect(fun,xb,xtol,ftol)

% r = bisect(fun,xb,xtol,ftol,verbose)

%

% Input: fun = (string) name of function for which roots are sought

% xb = vector of bracket endpoints. xleft = xb(1), xright = xb(2)

% xtol = (optional) relative x tolerance. Default: xtol=5*eps

% ftol = (optional) relative f(x) tolerance. Default: ftol=5*eps

% verbose = (optional) print switch. Default: verbose=0, no printing

%

% Output: r = root (or singularity) of the function in xb(1) <= x <= xb(2)

if size(xb,1)>1, warning(’Only first row of xb is used as bracket’); end

if nargin < ----(1)----, xtol = 5*eps; end

if nargin < ----(2)----, ftol = 5*eps; end

if nargin < ----(3)----, verbose = 0; end

xeps = max(xtol,5*eps); % Smallest tolerances are 5*eps

feps = max(ftol,5*eps);

a = xb(1,1); b = xb(1,2); % Use first row if xb is a matrix

xref = abs(b - a); % Use initial bracket in convergence test

fa = feval(fun,a); fb = feval(fun,b);

fref = max([abs(fa) abs(fb)]); % Use max f in convergence test

if sign(fa)==----(4)---- % Verify sign change in the interval

error(sprintf(’Root not bracketed by [%f, %f]’,a,b));

end

if verbose

fprintf(’\nBisection iterations for %s.m\n’,fun);

fprintf(’ k xm fm\n’);

end

k = 0; maxit = 50; % Current and max number of iterations

while k < maxit

k = k + 1;

dx = b - a;

xm = a + 0.5*dx; % Minimize roundoff in computing the midpoint

fm = feval(----(5)----,xm);

if verbose, fprintf(’%4d %12.4e %12.4e\n’,k,xm,fm); end

if (abs(fm)/fref < feps) | (abs(dx)/xref < xeps) % True when root is found

r = ----(6)----; return;

end

if sign(fm)==sign(fa)

a = ----(7)----; fa = ----(8)----; % Root lies in interval [xm,b],

% replace a and fa

else

b = ----(9)----; fb = ----(10)----; % Root lies in interval [a,xm],

% replace b and fb

end

end

warning(sprintf(’root not within tolerance after %d iterations\n’,k));

5 (b)

function yhat = hermint(x,f,fp,xhat)

% hermint Piecewise-cubic Hermite interpolation

%

% Synopsis: yhat = hermint(x,f,fp,xhat)

%

% Input: x = vector of independent variable values

% f, fp = vectors of f(x) and f’(x)

% xhat = (scalar or vector) x values where interpolant is evaluated

%

% Output: yhat = scalar or vector value of cubic hermite interpolant at

% x = xhat. size(yhat) = size(xhat)

n = length(x);

if length(f)~=n, error(’x and f are not compatible’);

elseif length(fp)~=n, error(’x and fp are not compatible’); end

% --- Construct coefficients of the piecewise interpolants

x = x(:); xhat = xhat(:); % Convert to column vectors

f = f(:); fp = fp(:);

dx = diff(x); % Vector of x(i+1) - x(i) values

divdif = diff(f)./dx; % Vector of divided differences, f[x(i),x(i+1)]

a = ----(11)----;

b = ----(12)----;

c = (----(13)----) ./dx;

d = (----(14)----) ./dx.^2;

% --- Locate each xhat value in the x vector

i = zeros(size(xhat)); % i is index into x such that x(i) <= xhat <= x(i+1)

for m=1:length(xhat) % For vector xhat: x(i(m)) <= xhat(m) <= x(i(m)+1)

i(m) = binSearch(x,xhat(m));

end

% --- Nested, vectorized evaluation of the piecewise polynomials

xx = xhat - x(i);

yhat = a(i) + xx.*(b(i) + xx.*(c(i) + xx.*d(i)));

5 (c)

function [c,R2] = linefit(x,y)

% linefit Least-squares fit of data to y = c(1)*x + c(2)

%

% Synopsis: c = linefit(x,y)

% [c,R2] = linefit(x,y)

%

% Input: x,y = vectors of independent and dependent variables

%

% Output: c = vector of slope, c(1), and intercept, c(2) of least sq. line fit

% R2 = (optional) coefficient of determination; 0 <= R2 <= 1

% R2 close to 1 indicates a strong relationship between y and x

if length(y)~= length(x), error(’x and y are not compatible’); end

x = x(:); y = y(:); % Make sure that x and y are column vectors

A = ----(15)----; % m-by-n matrix of overdetermined system

c = ----(16)----; % Solve normal equations

if nargout>1

r = ----(17)----;

R2 = ----(18)----;

end

